方差与标准差

6.4. 方差与标准差#

通过定理 Theorem 6.1,我们可以计算随机变量 \(X\) 函数的期望。其中,有一个特殊的函数,即 \((X-E(X))^2\) ,它的期望也是分布的重要特征,我们单独给一个定义——方差。

方差与标准差

若随机变量 \(X^{2}\) 的数学期望 \(E(X^{2})\) 存在,则称偏差平方

\[E(X-E(X))^{2}\]

为随机变量 \(X\) 的方差,记为

\[\begin{split} \begin{eqnarray*} \text{Var}(X) &=&E(X-E(X))^{2}\\ &=& \left\{ \begin{aligned} & \sum_{i}\left(x_{i}-E(x)\right)^{2} p\left(x_{i}\right), \qquad \mbox{在离散场合}\\ &\int_{-\infty}^{+\infty}(x-E(X))^{2} p(x) d x, \quad \mbox{在连续场合} \end{aligned} \right. \end{eqnarray*} \end{split}\]

称方差的平方根 \(\sqrt{\operatorname{Var}(X)}\) 为随机变量 \(X\) 的标准差,记为 \(\sigma(x)\)\(\sigma_x\)

Property 6.2

  • \(\text{Var}(X) = E(X^2) - (E(X))^2\)

  • 常数的方差为零,即若 \(c\) 为常数,则 \(\text{Var}(c) = 0\)

  • \(a,b\) 为常数,则 \(\text{Var}(aX+b) = a^2 \text{Var}(X)\) .

这里介绍三个常见随机变量期望和方差的计算方法。

Example 6.4

如果 \(X\sim b(n,p)\) ,那么 \(E(X) = np\)\(\text{Var}(X) = np(1-p)\)

Solution

\(X\) 的分布列为

\[ P(X=k) = C_n^k p^k (1-p)^{n-k},k = 0,1,2,\cdots,n. \]

于是, \(X\) 的期望为

\[\begin{eqnarray*} E(X) &=& \sum_{k=0}^n k P(X=k)\\ &=& \sum_{k=0}^n k \cdot C_n^k p^k (1-p)^{n-k}\\ &=& \sum_{k=1}^n k\cdot \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}\\ &=& \sum_{k=1}^n \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k}\\ &=& np\cdot \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}\\ &\overset{k'=k-1}{=}& np\cdot \sum_{k'=0}^{n-1} \frac{(n-1)!}{(k')!(n-1-k')!} p^{k'} (1-p)^{n-1-k'}\\ &=& np, \end{eqnarray*}\]

因为 \(X\) 的方差 \(\text{Var}(X) = E(X^2) - (E(X))^2\) ,所以,需要计算 \(X^2\) 的期望。而 \(X^2\) 的期望为

\[\begin{eqnarray*} E(X) &=& \sum_{k=0}^n k^2 P(X=k)\\ &=& \sum_{k=0}^n k^2\cdot C_n^k p^k (1-p)^{n-k}\\ &=& \sum_{k=1}^n k^2\cdot \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}\\ &=& \sum_{k=1}^n k\cdot \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k}\\ &=& np\cdot \sum_{k=1}^n k\cdot \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}\\ &\overset{k'=k-1}{=}& np\cdot \sum_{k'=0}^{n-1} (k'+1) \frac{(n-1)!}{(k')!(n-1-k')!} p^{k'} (1-p)^{n-1-k'}\\ &=& np\cdot ((n-1)p+1) \\ &=& n(n-1)p^2 + np, \end{eqnarray*}\]

于是,

\[\text{Var}(X) = E(X^2) - (E (X))^2 = n(n-1)p^2 + np - (np)^2 = np - np^2 = np(1-p).\]

Example 6.5

如果 \(X\sim N(\mu,\sigma^2)\) ,那么 \(E(X) = \mu\)\(\text{Var}(X) = \sigma^2\)

Solution

\(X\) 的密度函数为

\[ p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (x-\mu)^2\right\},x\in R. \]

于是, \(X\) 的期望为

\[\begin{eqnarray*} E(X) &=& \int_{0}^{\infty} x p(x) \text{d}x\\ &=& \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (x-\mu)^2\right\} \text{d}x\\ &\overset{z = x-\mu}{=}& \int_{-\infty}^{\infty} (z+\mu) \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (z)^2\right\} \text{d} z\\ &= & \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (z)^2\right\} \text{d} z + \mu\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (z)^2\right\} \text{d} z\\ &=& \mu. \end{eqnarray*}\]

\(X\) 的方差为

\[\begin{eqnarray*} \text{Var}(X) &=& E(X-E(X))^2\\ &=&\int_{-\infty}^{\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} (x-\mu)^2\right\} \text{d} x \\ &\overset{z = x-\mu}{=}& \int_{-\infty}^{\infty} z^2 \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} z^2\right\} \text{d} z\\ &=& \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} -{\sigma^2} z \text{d} \exp\left\{ - \frac{1}{2\sigma^2} z^2\right\} \\ &=& \frac{1}{\sqrt{2\pi \sigma^2}} \cdot \left(\left.-{\sigma^2} z\exp\left\{ - \frac{1}{2\sigma^2} z^2\right\} \right|_{-infty}^{\infty}+ \int_{-\infty}^{\infty} {\sigma^2}\exp\left\{ - \frac{1}{2\sigma^2} z^2\right\} \text{d}z \right)\\ &=& \int_{-\infty}^{\infty} {\sigma^2} \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{ - \frac{1}{2\sigma^2} z^2\right\} \text{d}z \\ &=& \sigma^2. \end{eqnarray*}\]

Example 6.6

如果 \(X\sim Ga(\alpha,\lambda)\) ,那么 \(E(X) = \frac{\alpha}{\lambda}\)\(\text{Var}(X) = \frac{\alpha}{\lambda^2}\)

Solution

\(X\) 的密度函数为

\[ p(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\lambda x\},x>0. \]

这里我们先考虑 \(X^k\) 的期望

\[\begin{eqnarray*} E(X^k) &=& \int_{0}^{\infty} x^k p(x) \text{d}x = \int_{0}^{\infty} x^k \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\lambda x\}\text{d}x\\ &=& \int_{0}^{\infty} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha+k -1} \exp\{-\lambda x\}\text{d}x\\ &=& \int_{0}^{\infty} \frac{(\alpha+k-1)\times \cdots \times (\alpha)}{\lambda^k}\cdot \frac{\lambda^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k -1} \exp\{-\lambda x\}\text{d}x\\ &=&\frac{(\alpha+k-1)\times \cdots \times (\alpha)}{\lambda^k}. \end{eqnarray*}\]

于是, \(X\) 的期望为

\[E(X) = \frac{\alpha}{\lambda}.\]

\(X\) 的方差为

\[ \text{Var}(X) = E(X^2) - (E X)^2 = \frac{(\alpha+1)\alpha}{\lambda^2} - \frac{\alpha^2}{\lambda^2} = \frac{\alpha}{\lambda^2}. \]

Remark

在计算期望时,一个最常用的方法是“合成概率函数”。