8.7. 常见的多维随机变量的分布#

8.7.1. 多项分布#

多项分布

进行 \(n\) 次独立重复实验,如果每次实验有 \(r\) 个互不相容的结果: \(A_1,A_2,\cdots,A_r\) 之一发生,且每次是试验中 \(A_i\) 发生的概率为 \(p_i = P(A_i),i=1,2,\cdots,r\) ,且 \(p_{1}+p_{2}+ \cdots +p_{r}=1\) 。记 \(X_{i}\)\(n\) 次独立重复试验中 \(A_{i}\) 出现的次数, \(i=1,2, \cdots ,r\) ,则 \((X_{1}, X_{2}, \cdots, X_{r})\) 取值 \((x_{1}, x_{2}, \cdots, x_{r})\) 的概率,即 \(A_{1}\) 出现 \(x_{1}\) 次, \(A_{2}\) 出现 \(x_{2}\) 次, \(\cdots\) , \(A_{r}\) 出现 \(x_{r}\) 的概率为

\[P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{r}=x_{r}\right)=\frac{n!}{x_{1} ! x_{2} !\cdots x_{r} !} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{r}^{x_{r}}\]

其中 \(n=n_{1}+n_{2}+ \cdots +n_{r}\) 。 称这个联合分布列为多项分布,又称为 \(r\) 项分布。记 \(M(n,p_{1}, p_{2}, \cdots, p_{r})\)

Remark

  • 典型例子:投掷 \(r\) 面骰子。

  • \(r=2\) 时,即为二项分布。

  • \(r\) 项分布是 \(r-1\) 维随机变量的分布。

接下来,我们用一个例子来讨论多项分布与二项分布之间的关系。

Example 8.7

考虑三项分布 \(M(n,p_{1}, p_{2}, p_{3})\) 实质上是一个二维随机变量 \((X,Y)\) 的分布,其联合分布为

\[\begin{split} P(X=i, Y=j)=\frac{n !}{i ! j !(n-i-j) !} p_{1}^{i} p_{2}^{j}\left(1-p_{1}-p_{2}\right)^{n-i-j}, \left\{\begin{aligned} &i, j=0,1, \cdots, n \\ &i+j \leq n \end{aligned} \right. \end{split}\]

于是, \(X\) 的边际分布为

\[\begin{split} \begin{eqnarray*} P(X=i) &=&\sum_{j=0}^{n-i} \frac{n !}{i ! j !(n-i-j) !} p_{1}^{i} p_{2}^{j}\left(1-p_{1}-p_{2})^{n-i-j}\right.\\ &=&\frac{n !}{i !(n-i) !} p_{1}^{i}\left(1-p_{1}\right)^{n-i} \sum_{j=0}^{n-i} \frac{(n-i) !}{j !(n-i-j) !} \frac{p_{2}^{j}\left(1-p_{1}-p_{2}\right)^{n-i-j}}{\left(1-p_{1}\right)^{n-i}} \\ &=&\frac{n !}{i !(n-i) !} p_{1}^{i}\left(1-p_{1}\right)^{n-i} \sum_{j=0}^{n-i} \frac{(n-i) !}{j !(n-i-j) !} (p_{2}^{\ast})^{ j}\left(1-p_{2}^{\ast}\right)^{n-i-j} \\ &=&\frac{n !}{i !(n-i) !} p_{1}^{i}\left(1-p_{1}\right)^{n-i}, \end{eqnarray*} \end{split}\]

其中, \(p_{2}^{\ast}=\frac{p_{2}}{1-p_{1}}\) 。因此, \(X \sim b\left(n, p_{1}\right)\)

8.7.2. 多维超几何分布#

多维超几何分布

袋中有 \(N\) 个球,其中有 \(N_i\)\(i\) 号球, \(i=1,2,\cdots,r\) ,且 \(N = N_1+N_2 + \cdots + N_r\) . 从中任意取出 \(n(n\leq N)\) 个,若记 \(X_i\) 为取出的 \(n\) 个球中 \(i\) 号球的个数, \(i=1,2,\cdots,r\) ,则

\[\begin{split} P(X_1=n_1,X_2=n_2,\cdots,X_r= n_r) = \frac{\begin{pmatrix} N_1\\n_1 \end{pmatrix}\begin{pmatrix} N_2\\n_2 \end{pmatrix}\cdots\begin{pmatrix} N_r\\n_r \end{pmatrix}}{\begin{pmatrix} N\\n \end{pmatrix}} \end{split}\]

其中 \(n_1+n_2+\cdots+n_r = n,n_i\leq N_i,i=1,2,\cdots,r\) 。称这个联合分布列为多项超几何分布。

Remark

  • \(r=2\) 时,我们可以只考虑 \(X_1\)\(X_2\) ,这是因为 \(X_1+X_2=n\) 。此时的分布列就是(一维)超几何分布。

  • \(r\geq 2\) 时,多维超几何分布也是 \(r-1\) 维随机变量的分布。

8.7.3. 多维均匀分布#

多维均匀分布

\(D\)\(R^n\) 中的一个有界区域,其度量为 \(S_D\) 。如果多维随机变量 \((X_{1}, X_{2}, \cdots, X_{n})'\) 的联合密度函数为

\[\begin{split}p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left\{ \begin{aligned} &\frac{1}{S_{D}}, & \left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D \\ &0, & \text { 其他 } \end{aligned} \right.\end{split}\]

则称 \(X_{1}, X_{2}, \cdots, X_{n}\) 服从 \(D\) 上的多维均匀分布,记为 \(X_{1}, X_{2}, \cdots, X_{n}\sim U(D)\)

Remark

二维均匀分布所描述的随机现象就是向平面区域 \(D\) 中随机投点。 如果该点坐标 \((X,Y)\) 落在 \(D\) 的子区域 \(G\) 中概率只与 \(G\) 的面积有关,而与 \(G\) 的位置无关,则

\[P((X, Y) \in G)=\iint_{G} p(x, y) d x d y=\iint_{G} \frac{1}{S_{D}} d x d y=\frac{S_{G}}{S_{D}}\]

8.7.4. 多维正态分布#

多维正态分布

\(\boldsymbol{X}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)'\) 为一个 \(n\) 维随机变量,其密度函数为

\[p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=p(\mathbf{x})=(2 \pi)^{-\frac{n}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{\mu})' \Sigma^{-1}(\mathbf{x}-\mathbf{\mu})\right\}\]

\(\mathbf{X}\) 满足 \(n\) 元正态分布,记 \(X \sim N_{n}(\mathbf{\mu}, \Sigma)\)

Remark

  • \(n=1\) 时, \(\mathbf{\mu} = \mu_1\)\(\Sigma = \sigma_1^2\) ,一元正态分布的密度函数为

\[ p(x) = (2\pi \sigma_1^2)^{-1/2} \exp\left\{ -\frac{1}{2\sigma_1^2} (x_1-\mu_1)^2 \right\} \]
  • \(n=2\) 时, \(\mathbf{\mu} = (\mu_1,\mu_2)'\)

\[\begin{split} \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1\sigma_2\\ \rho \sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \end{split}\]

所以, \(\Sigma\) 的行列式为

\[ |\Sigma| = \sigma_1^2\sigma_2^2 - (\rho \sigma_1\sigma_2)^2 = (1-\rho^2) \sigma_1^2\sigma_2^2 \]

而它的逆矩阵为

\[\begin{split} \begin{eqnarray*} \Sigma^{-1} &=& \frac{1}{|\Sigma|} \Sigma^{\ast}\\ &=& \frac{1}{|\Sigma|}\begin{pmatrix} \sigma_2^2 & -\rho \sigma_1\sigma_2 \\ -\rho \sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix} \end{eqnarray*} \end{split}\]

其中, \(\Sigma^{\ast}\)\(\Sigma\) 的伴随矩阵。所以,二元正态分布的密度函数为

\[\begin{split} \begin{eqnarray*} p(\mathbf{x}) &=&p(x_1,x_2) = (2 \pi)^{-\frac{2}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{\mu})' \Sigma^{-1}(\mathbf{x}-\mathbf{\mu})\right\}\\ &=& (2 \pi)^{-1} \left((1-\rho^2) \sigma_1^2\sigma_2^2\right)^{-1/2}\\ &&\cdot \exp\left\{ -\frac{1}{2} ((x_1,x_2)' - (\mu_1,\mu_2)')' \frac{1}{(1-\rho^2) \sigma_1^2\sigma_2^2}\begin{pmatrix} \sigma_2^2 & -\rho \sigma_1\sigma_2 \\ -\rho \sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix} ((x_1,x_2)' - (\mu_1,\mu_2)') \right\}\\ &=& (2 \pi)^{-1} \left((1-\rho^2) \sigma_1^2\sigma_2^2\right)^{-1/2}\\ &&\cdot \exp\left\{ -\frac{1}{2(1-\rho^2)} \left(\frac{(x_1 -\mu_1)^2}{\sigma_1^2} - 2\rho \cdot \frac{(x_1 -\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 -\mu_2)^2}{\sigma_2^2} \right) \right\}\\ \end{eqnarray*} \end{split}\]

Example 8.8

二维正态分布的边际分布为一元正态分布。

Solution

\((X_1,X_2)'\) 的联合密度函数为

\[\begin{split} \begin{eqnarray*} p(x_1,x_2)&=&(2 \pi)^{-1} \left((1-\rho^2) \sigma_1^2\sigma_2^2\right)^{-1/2}\\ &&\cdot \exp\left\{ -\frac{1}{2(1-\rho^2)} \left(\frac{(x_1 -\mu_1)^2}{\sigma_1^2} - 2\rho \cdot \frac{(x_1 -\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 -\mu_2)^2}{\sigma_2^2} \right) \right\}\\ \end{eqnarray*} \end{split}\]

于是, \(X\) 的边际密度函数为

\[\begin{split} \begin{eqnarray*} p_{X_1}(x_1) &=&\int_{-\infty}^{+\infty} p(x_1, x_2) d x_2 \\ &=&\int_{-\infty}^{+\infty}(2 \pi)^{-1} \left((1-\rho^2) \sigma_1^2\sigma_2^2\right)^{-1/2}\\ &&\cdot \exp\left\{ -\frac{1}{2(1-\rho^2)} \left(\frac{(x_1 -\mu_1)^2}{\sigma_1^2} - 2\rho \cdot \frac{(x_1 -\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 -\mu_2)^2}{\sigma_2^2} \right) \right\} \text{d} x_2 \\ &=& \int_{-\infty}^{+\infty} (2 \pi)^{-1/2} \left((1-\rho^2) \sigma_2^2\right)^{-1/2} \exp\left\{ -\frac{1}{2(1-\rho^2)}\cdot \left( \frac{(x_2 -\mu_2)}{\sigma_2} - \rho \frac{(x_1 -\mu_1)}{\sigma_1} \right)^2 \right\} \text{d} x_2 \\ &&\cdot (2\pi \sigma_1^2)^{-1/2}\cdot \exp\left\{ -\frac{(1-\rho^2)}{2(1-\rho^2)} \frac{(x_1 -\mu_1)^2}{\sigma_1^2} \right\} \\ &=&(2\pi \sigma_1^2)^{-1/2}\cdot \exp\left\{ - \frac{(x_1 -\mu_1)^2}{2\sigma_1^2} \right\} \end{eqnarray*} \end{split}\]

其中,第三个等式成立的原因是

\[\begin{split} \begin{eqnarray*} && \frac{(x_2 -\mu_2)^2}{\sigma_2^2} - 2\rho \cdot \frac{(x_1 -\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} +\frac{(x_1 -\mu_1)^2}{\sigma_1^2} \\ &=& \frac{(x_2 -\mu_2)^2}{\sigma_2^2} - 2\rho \cdot \frac{(x_1 -\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \rho^2\frac{(x_1 -\mu_1)^2}{\sigma_1^2} + \frac{(x_1 -\mu_1)^2}{\sigma_1^2} - \rho^2\frac{(x_1 -\mu_1)^2}{\sigma_1^2}\\ &=& \left( \frac{(x_2 -\mu_2)}{\sigma_2} - \rho \frac{(x_1 -\mu_1)}{\sigma_1} \right)^2 + (1-\rho^2) \frac{(x_1 -\mu_1)^2}{\sigma_1^2}. \end{eqnarray*} \end{split}\]

所以, \(X\) 的边际分布为 \(N(\mu_1,\sigma_1^2)\)