协方差与相关系数

9.3. 协方差与相关系数#

9.3.1. 协方差#

在考虑多个随机变量时,每一个随机变量的期望与方差是我们关注的特征数之外,两个随机变量之间的关系也是我们关心的一个特征数。以下我们介绍特征数——协方差。

协方差

\((X,Y)\) 是一个二维随机变量,若

\[E\left( (X-E(X))(Y-E(Y)) \right) \]

存在,则称其为 \(X\)\(Y\) 的协方差或相关(中心)矩,并记为 \(\text{Cov}(X,Y)=E\left ( (X-E(X))(Y-E(Y)) \right)\)

Remark

  • 特别地, \(\text{Cov}(X,X)=\text{Var}(X)\)

  • 通过协方差可以判断两个随机变量之间的关系,即

  • \(\text{Cov}(X,Y)>0\) 时,称 \(X\)\(Y\) 正相关

  • \(\text{Cov}(X,Y)<0\) 时,称 \(X\)\(Y\) 负相关

  • \(\text{Cov}(X,Y)=0\) 时,称 \(X\)\(Y\) 不相关(毫无关联/非线性关系)

以下介绍协方差的一些性质。

Property 9.2

  • \(\text{Cov}(X,Y)=E(XY)-E(X)E(Y)\)

  • \(X\)\(Y\) 独立 \(\Rightarrow \text{Cov}(X,Y)=0\) ,反之不然。

Remark

\(X\sim N(0,\sigma^{2}),Y=X^{2}\) 。我们可以计算

\[ \text{Cov}(X,Y) = E(XY) - E(X)E(Y) = E(X^3) = 0. \]
  • \(\text{Var}(X \pm Y)= \text{Var}(X)+\text{Var}(Y) \pm 2\text{Cov}(X, Y)\)

Remark

对任意 \(n\) 个随机变量 \(X_{1},X_{2},\cdots,X_{n}\) ,有

\[\text{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \text{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \text{Cov}\left(X_{i}, X_{j}\right).\]
  • \(X\)\(Y\) 不相关,则

\[E(X Y)=E(X)E(Y), \quad \text{且}\quad \text{Var}(X \pm Y)= \text{Var}(X)+\text{Var}(Y).\]
  • 协方差的计算与次序无关,即 \(\text{Cov}(X,Y)=\text{Cov}(Y,X)\)

  • 任意随机变量 \(X\) 与常数 \(a\) 的协方差为零,即 \(\text{Cov}(X,a)=0\)

  • 对任意常数 \(a,b\) ,有 \(\text{Cov}(aX,bY)=ab\cdot \text{Cov}(X,Y)\)

  • 对于任意三个随机变量 \(X,Y,Z\) ,有

\[\text{Cov}(X+Y, Z)=\text{Cov}(X, Z)+\text{Cov}(Y, Z)\]

9.3.2. 相关系数#

相关系数

\((X,Y)\) 是一个二维随机变量,且 \(\text{Var}(X)=\sigma _{X} ^{2} >0, \text{Var}(Y)=\sigma _{Y} ^{2} >0\) ,则称

\[ \text{Corr}(X, Y)=\frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}=\frac{\text{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}\]

\(X\)\(Y\) 的(线性)相关系数。

Remark

从另一个角度来看相关系数,令 \(E(X) = \mu_X\)\(E(Y) = \mu_Y\) 。将原始的随机变量进行标准化,即

\[ X^{\ast} = \frac{X-\mu_{X}}{\sigma_{X}} , \quad Y^{\ast} = \frac{Y-\mu_{Y}}{\sigma_{Y}}. \]

经过标准化后的两个随机变量的协方差为

\[\begin{split} \begin{eqnarray*} \text{Cov}(X^{\ast},Y^{\ast}) &=& \text{Cov}\left(\frac{X-\mu_{X}}{\sigma_{X}}, \frac{Y-\mu_{Y}}{\sigma_{Y}}\right)\\ &=& \frac{1}{\sigma_X\sigma_Y} \text{Cov}(X,Y)\\ &=& \text{Corr}(X,Y). \end{eqnarray*} \end{split}\]

Example 9.3

证明二维正态分布 \(\left(\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho\right)\) 的相关系数为 \(\rho\)

Solution

首先,计算协方差

\[\begin{split} \begin{eqnarray*} \text{Cov}(X, Y) &=&E((X-E(X))(Y-E(Y)))\\ &=& \frac{1}{2 \pi \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}(1-\rho ^{2})}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \\ && \cdot \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \text{d} x \text{d} y \\ &=& \frac{1}{2 \pi \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)\cdot \\ && \cdot \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}-\rho \frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}+\left(\sqrt{1-\rho^{2}} \frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]\right\} \text{d} x \text{d} y \end{eqnarray*} \end{split}\]

\[u=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{x-\mu_{X}}{\sigma_{X}}-\rho \frac{\left(y-\mu_{Y}\right)}{\sigma_{Y}}\right), \quad \text{且}\quad v=\frac{y-\mu_{Y}}{\sigma_{Y}}\]

\[\begin{split} \begin{eqnarray*} \left\{\begin{aligned} &x-\mu_{X}=\sigma_{X}\left(u \sqrt{1-\rho^{2}}+\rho v\right),\\ & y-\mu_{Y}=\sigma_{Y} v, \end{aligned}\right. \quad \text{且}\quad |J|=\left|\begin{matrix} \sqrt{1-\rho^{2}} \sigma_{X} & \rho \sigma_{X} \\ 0 & \sigma_{Y} \end{matrix}\right|=\sqrt{1-\rho^{2}} \sigma_{X} \sigma_{Y} \end{eqnarray*} \end{split}\]
\[\begin{split} \begin{eqnarray*} \text{Cov}\left(X, Y\right)&=& \frac{1}{2 \pi \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(\sigma_{X}\left(u \sqrt{1-\rho^{2}}+\rho v\right)\right)\left(\sigma_{Y} v\right) \\ && \cdot \exp \left\{-\frac{1}{2}\left[u^{2}+v^{2}\right]\right\} \cdot \sqrt{1-\rho^{2}} \cdot \sigma_{X} \sigma_{Y} \text{d} u \text{d} v \\ &=& \frac{\sigma_{X} \sigma_{Y}}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(u v \sqrt{1-\rho^{2}}+\rho v^{2}\right) \exp \left\{-\frac{1}{2}\left(u^{2}+v^{2}\right)\right\} \text{d} u \text{d} v \end{eqnarray*} \end{split}\]

注意到

\[\begin{split} \begin{eqnarray*} &&\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u v \exp \left\{-\frac{1}{2}\left(u^{2}+v^{2}\right)\right\} \text{d} u \text{d} v=\int_{-\infty}^{+\infty} u \exp \left\{-\frac{1}{2} u^{2}\right\} \text{d} u \cdot \int_{-\infty}^{+\infty} v \exp \left\{-\frac{1}{2} v^{2}\right\} \text{d} v=0 \\ &&\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} v^{2} \exp \left\{-\frac{1}{2}\left(u^{2}+v^{2}\right)\right\} \text{d} u \text{d} v=\int_{-\infty}^{+\infty} \exp \left\{-\frac{1}{2}\left(u^{2}\right)\right\} \text{d} u \cdot \int_{-\infty}^{+\infty} v^{2} \exp \left\{-\frac{1}{2} v^{2}\right\} \text{d} v \\ &=&2 \pi \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} u^{2}\right\} \text{d} u \int_{-\infty}^{+\infty} v^{2} \cdot \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} v^{2}\right\} \text{d} v=1 \cdot E\left(v^{2}\right) \cdot 2 \pi=2 \pi . \end{eqnarray*} \end{split}\]

\[\begin{split} \begin{eqnarray*} \text{Cov}(X, Y)=\frac{\sigma_{X} \sigma_{Y}}{2 \pi} \cdot \rho \cdot 2 \pi=\rho \sigma_{X} \sigma_{Y} \\ \text{Corr}(X, Y)=\frac{\text{Cov}(X ,Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}=\frac{\rho \sigma_{X} \sigma_{Y}}{\sigma_{X} \sigma_{Y}}=\rho. \end{eqnarray*} \end{split}\]

Theorem 9.3 (Schwarz 不等式)

对任意二维随机变量 \((X,Y)\) ,若 \(X\)\(Y\) 的方差都存在,且记 \(\sigma_{X}^{2}=\text{Var}(X),\sigma_{Y}^{2}=\text{Var}(Y)\) ,则有

\[(\text{Cov}(X, Y))^{2} \leq \sigma_{X}^{2} \sigma_{Y}^{2}.\]
Proof

不妨设 \(\sigma_{X}^{2}>0\) ,设函数

\[\begin{split} \begin{eqnarray*} g(t) &=&E(t(X-E(X))+(Y-E(Y)))^{2} \\ &=&t^{2} \sigma_{X}^{2}+2t\text{Cov}\left(X, Y\right)+\sigma_{Y}^{2}. \end{eqnarray*} \end{split}\]

因为 \(g(t)\) 是一个非负随机变量的期望,所以, \(g(t)\) 恒非负。而且,这个二次函数的开口向上,其只有一个或零个零根。所以,其判别式小于或等于零,即

\[ {(2 \text{Cov}(X, Y))^{2}-4 \sigma_{X}^{2} \sigma_{Y}^{2} \leqslant 0}. \]

也就是说,

\[(\text{Cov}(X, Y))^{2} \leqslant \text{Var}(X) \text{Var}(Y).\]

Property 9.3

  • \(\left | \text{Corr}(X,Y) \right | \le1\)

  • \(\text{Corr}(X,Y)=\pm1\Leftrightarrow X\)\(Y\) 之间几乎处处有线性关系,即存在 \(a \neq0\)\(b\) ,使得

\[P(Y=aX+b)=1\]

其中,当 \(\text{Corr}(X,Y)=1\) 时,有 \(a>0\) ;当 \(\text{Corr}(X,Y)=-1\) 时,有 \(a<0\)

Remark

  • \(\text{Corr}(X,Y)=0\) ,则称 \(X\)\(Y\) 不相关;

  • \(\text{Corr}(X,Y)=+1\) ,则称 \(X\)\(Y\) 完全正相关;

  • \(\text{Corr}(X,Y)=-1\) ,则称 \(X\)\(Y\) 完全负相关;

  • \(0<\left | \text{Corr}(X,Y) \right | <1\) ,则称 \(X\)\(Y\) 有“一定程度”的线性关系。

  • 在二维正态分布 \(N\left(\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho\right)\) 场合,不相关与独立是等价的。